
Improving Satellite Quantitative Precipitation Estimation Using
GOES-Retrieved Cloud Optical Depth

RONALD STENZ, XIQUAN DONG, AND BAIKE XI

Department of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota

ZHE FENG

Pacific Northwest National Laboratory, Richland, Washington

ROBERT J. KULIGOWSKI

NOAA/NESDIS/Center for Satellite Applications and Research, College Park, Maryland

(Manuscript received 15 April 2015, in final form 2 October 2015)

ABSTRACT

To address gaps in ground-based radar coverage and rain gauge networks in the United States, geosta-

tionary satellite quantitative precipitation estimation (QPE) such as the Self-Calibrating Multivariate

Precipitation Retrieval (SCaMPR) can be used to fill in both spatial and temporal gaps of ground-based

measurements. Additionally, with the launch of Geostationary Operational Environmental Satellite R series

(GOES-R), the temporal resolution of satellite QPEs may be comparable to Weather Surveillance Radar-

1988 Doppler (WSR-88D) volume scans as GOES images will be available every 5min. However, while

satellite QPEs have strengths in spatial coverage and temporal resolution, they face limitations, particularly

during convective events. Deep convective systems (DCSs) have large cloud shields with similar brightness

temperatures (BTs) over nearly the entire system, but widely varying precipitation rates beneath these clouds.

Geostationary satellite QPEs relying on the indirect relationship between BTs and precipitation rates often

suffer from large errors because anvil regions (little or no precipitation) cannot be distinguished from rain

cores (heavy precipitation) using only BTs. However, a combination of BTs and optical depth t has been

found to reduce overestimates of precipitation in anvil regions. A new rainmask algorithm incorporating both

t and BTs has been developed, and its application to the existing SCaMPR algorithm was evaluated. The

performance of the modified SCaMPR was evaluated using traditional skill scores and a more detailed

analysis of performance in individual DCS components by utilizing the Feng et al. classification algorithm.

SCaMPR estimates with the new rain mask benefited from significantly reduced overestimates of pre-

cipitation in anvil regions and overall improvements in skill scores.

1. Introduction

Satellite quantitative precipitation estimation (QPE) is

valuable to the National Oceanic and Atmospheric Ad-

ministration (NOAA)/National Weather Service (NWS)

for flood and river forecasts (Zhang and Qi 2010; Zhang

et al. 2011). Geostationary satellite QPEs such as the

Self-Calibrating Multivariate Precipitation Retrieval

(SCaMPR) can provide continuous spatial coverage

(Scofield and Kuligowski 2003) to fill in the gaps from

both surface rain gauge network measurements and ra-

dar QPEs because of their limited spatial coverages

(Krajewski and Smith 2002; Maddox et al. 2002). While

numerous geostationary satellite QPEs exist (Negri and

Adler 1981; Adler and Negri 1988; Vicente et al. 1998;

Scofield and Kuligowski 2003; Kuligowski 2010), this

study will focus on SCaMPR (Kuligowski 2010), an in-

frared (IR) brightness temperature (BT)-based algorithm

being developed in preparation for the Geostationary

Operational Environmental Satellite R series (GOES-R)

launch by NOAA/NESDIS.

Similar to other IR-based algorithms, SCaMPR faces

limitations arising from the weak relationship between
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BTs and surface precipitation. For example, the BTs of

anvil clouds from deep convection are similar to those of

the parent precipitating clouds (Feng et al. 2011, 2012).

More effective separation of anvil clouds from deep

convective clouds can improve the performance of IR-

based satellite QPEs (Vicente et al. 1998). A rain mask

using a combination of BTs and cloud optical depth t has

been developed (Stenz et al. 2014), which can reduce

overestimates of precipitation in anvil regions of deep

convective systems (DCSs), providing more accurate

geostationary satellite QPEs (Stenz et al. 2014). Because

rain cores of DCSs are located where clouds are thicker

than the surrounding anvil cloud shield, inclusion of

optical depth in satellite QPE algorithms can aid in

separating these two regions with drastically different

precipitation rates but similar BTs (Stenz et al. 2014).

An example of the schematic diagram used for the Stenz

et al. (2014) algorithm, and the algorithm discussed in

this paper, is shown in Fig. 1. The observed precipitating

area (Fig. 1d) is more closely related to the cloud optical

depth (Fig. 1c) than the cloud-top temperature (Fig. 1a).

As a result, the use of only brightness temperatures to

estimate precipitation rates (Fig. 1b) leads to large

overestimates of precipitating area. In the encircled re-

gions, cold BTs are present but cloud optical thickness is

relatively low. These are regions where the inclusion of

optical depth into a BT-based precipitation estimation

algorithm such as SCaMPR will reduce the over-

estimates of precipitating area shown in Fig. 1.

In this study, the performance of the SCaMPR algo-

rithm and SCaMPR with an optical-depth-based rain

mask applied to it (SCaMPR-OD) will be evaluated

against high-quality multiradar-based precipitation es-

timates, next-generation QPE (Q2), for three warm

seasons (2010–12) over the southern Great Plains

(SGP). Ground-based radar data have been used in re-

cent studies (Kirstetter et al. 2012; Amitai et al. 2012) to

validate satellite QPEs, such as those from TRMM. In

FIG. 1. (a) GOES IR temperature (K), (b) SCaMPR-estimated precipitation rate (mmh21), (c) GOES-retrieved cloud optical depth,

and (d) Q2 precipitation rate (mmh21) at 2245 UTC 11 May 2011. Each oval indicates regions with cold BTs but optically thin clouds

where SCaMPR estimated precipitation that was not observed by radar.
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this study, a pixel-level optical-depth-based rain mask

algorithm has been developed and applied to SCaMPR,

and improvements in the estimated precipitating area

and volume have been documented. This algorithm is

based on the schematic diagram of the Stenz et al. (2014)

algorithm but is more computationally efficient and

more physically based rather than empirically based.

For example, the computational time using the new al-

gorithm was reduced by 20%–30% compared to the

Stenz et al. (2014) method based on test runs over the

88 3 148 study domain. Similar computational time

savings are expected to extend to the larger domain for

the complete version of SCaMPR. Additionally, while

the Stenz et al. (2014) algorithm utilized brightness

temperature thresholds to create a radius of influence

around identified optical depth cores (similar in idea to

the Steiner radar-based classification of convective and

stratiform regions; Steiner et al. 1995), the algorithm

discussed in this paper functions at the pixel level and

does not use any radii of influence. This approach re-

moves subjective criteria for radii of influence, while

also eliminating potential biases possible using the Stenz

et al. (2014) algorithm for storms with asymmetrical

precipitation regions. For example, in a sheared envi-

ronment the Stenz et al. (2014) algorithm may be prone

to overestimating precipitation in upshear regions be-

cause the precipitating area is determined with a radius

of influence from regions of high optical depth and cold

brightness temperatures. Typically, upshear regions

have less precipitation and the transition to non-

precipitating optically thin clouds occurs more quickly

than in downshear regions. In these instances, the Stenz

et al. (2014) algorithm may identify regions upshear of

convective cores as precipitating even if these regions

are nonprecipitating and have low optical depth values.

The new pixel-based approach, which does not rely on a

radius of influence, is directly based on the satellite

pixel-retrieved properties and will not suffer from the

potential upshear bias that could occur with the Stenz

et al. (2014) algorithm. While the new algorithm does

have an empirical component—the chosen optical depth

threshold to be used—it eliminates the need to empiri-

cally choose radii of influence, along with brightness

temperature and optical depth thresholds that are

matched with an empirically or subjectively determined

radius of influence.

Improvement of satellite QPEs in DCSs is important

because the majority of flash flooding events in the

United States arise from DCSs, and a large portion of

warm season total rainfall is produced by these systems.

As near-real-time satellite QPEs can aid in both regional

and global disaster preparedness and mitigation, im-

provement of these products can protect lives and

property (Hong et al. 2007). To improve the well-

documented problem of overestimates in anvil regions

from IR-based satellite QPEs during convection (Stenz

et al. 2014), a new pixel-level optical-depth-based rain

mask will be applied to SCaMPR and thoroughly evalu-

ated against Q2. Section 2 of this paper will briefly in-

troduce the datasets used for precipitation retrieval and

evaluation, while section 3 describes the derivation of the

rain mask from optical depth retrievals. The impact of

this mask on the accuracy of the rainfall retrievals is

discussed in sections 4 and 5, followed by concluding

comments in section 6 on more general applications of

this optical-depth-based rain mask and its limitations.

2. Data

a. Q2 data

National Mosaic and Multi-Sensor QPE (NMQ) Q2

during warm season convective events from 2010 to 2012

has been collected for this study for NMQ tile 6, which

has northern and southern boundaries at 408 and 208N
and is bounded longitudinally by 1108 and 908W. NMQ

Q2 provides multiradar precipitation estimates with a

grid resolution of 1 km 3 1km (http://www.nssl.noaa.

gov/projects/q2/q2.php). Q2 is produced using quality-

controlled radar reflectivity data frommultiple radars to

automatically classify precipitation as convective rain,

stratiform rain, warm rain, hail, and snow (Zhang et al.

2011). These classifications assign reflectivity–rain rate

(Z–R) relationships to each pixel to provide the Q2 rain

rates (Zhang et al. 2011). These Q2 have been found to

be consistent with Oklahoma Mesonet rain gauge net-

work observations for both precipitation amounts and

characteristics (Stenz et al. 2014).

b. SCaMPR

SCaMPR, the GOES-R algorithm for the estimation

and detection of rainfall, attempts to combine the

strengths of microwave-estimated rain rates with the

better spatial and temporal coverage of GOES data by

calibrating predictors from GOES IR BTs against

microwave-estimated rainfall rates (Kuligowski 2010).

Brightness temperature differences between GOES

bands are used to determine three cloud types. Sepa-

rately matched datasets for these three cloud types

(water, ice, and cold-top convective) and four latitude

bands are updated when new microwave-estimated rain

rates are available. Each time the matched datasets are

updated, discriminant analysis is used to identify the two

best predictors and coefficients for discriminating rain-

ing from nonraining pixels; stepwise forward linear re-

gression is used to select the two best predictors and
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coefficients for deriving rain rates (Kuligowski 2010).

The predictors available for this version of SCaMPR

were GOES bands 3 (6.7mm) and 4 (10.7mm), the dif-

ference between these two bands, and two measures of

local texture from theGOES band 4 field. The nonlinear

relationship between rain rates and IR brightness tem-

peratures is accounted for by regressing IR brightness

temperatures against rain rates in log–log space to

generate additional rain-rate predictors. Lookup tables

restore retrieved rain rates to the correct distribution by

matching the regression-derived cumulative distribution

functions (CDFs) of rain rates to theCDFs ofmicrowave-

estimated rain rates.

c. Hybrid classification

DCSs over the study region are objectively identified

and subsequently partitioned into convective cores,

stratiform rain regions, and anvil regions through anal-

ysis of collocated ground-based radar and geostationary

satellite data (Feng et al. 2011). The detailed classifica-

tion of DCS components provided by this hybrid clas-

sification allows the performance of SCaMPR and

SCaMPR-OD to be evaluated in specific regions of

DCSs. The radar-identified convective core (CC) region

is characterized by high reflectivity values using the

convective–stratiform algorithm originally developed in

Steiner et al. (1995) and modified by Feng et al. (2011).

For this study, the threshold for a pixel to be identified

as a CC was set to 45dBZ. Radar-identified stratiform

(SR) regions account for precipitation echoes that fall

below the convective reflectivity threshold (Steiner et al.

1995). Anvil cloud (AC) regions are partially identified

by radar, where larger echo returns (.0 dBZ) are de-

tectable by radar with echo bases above 6km. However,

limited power returns from anvil regions frequently

make these clouds undetectable by ground-based pre-

cipitation radars such as the Weather Surveillance

Radar-1988 Doppler (WSR-88D; Stenz et al. 2014).

Since GOES can view the entire cloud shield, GOES

data are used to supplement WSR-88D data to identify

thin anvil regions of DCSs. In this study, the hybrid

classification product is produced at a grid resolution of

4 km 3 4 km, and with the same temporal resolution as

SCaMPR and Q2 instantaneous estimates for compari-

son. The radar reflectivity data used in the classification

are on a 1km 3 1km grid, so the radar classified DCS

components are averaged to a 4 km 3 4 km grid by se-

lecting the most frequent classification within the

4 km 3 4 km grid box.

d. Cloud optical depth retrievals

GOES-retrieved cloud optical depth used for the rain

mask in this study was provided by NASA’s Langley

Research Center. These retrievals were generated using

the Visible Infrared Solar-Infrared Split Window Tech-

nique (VISST) algorithm (Minnis et al. 2008; http://www-

pm.larc.nasa.gov/satimage/visst.html). Optical depth is

retrieved by matching parameterizations of theoretical

radiance calculations for water droplet and ice crystal size

distributions to measurements. Parameterizations for

sevenwater and nine ice crystal size distributions are used

in this retrieval, along with observed radiances from the

0.65, 3.9, 10.8, and 12.0mm channels. Other required in-

puts in this optical depth retrieval include atmospheric

profiles from in situ measurements ormodel data, surface

characterization from the International Geosphere–

Biosphere Programme (IGBP), clear sky radiances

from Clouds and the Earth’s Radiant Energy System

(CERES), and 4-km-resolution data from GOES. Ad-

ditionally, narrowband to broadband flux conversion

functions are required in this algorithm. The optical

depth retrievals used in this study cover 328–408N and

1058–918W over the SGP region. Only retrievals during

daylight hourswere used, as the solar zenith angles during

dawn and dusk often produce large errors in the radiance

calculations that affect accurate optical depth retrievals.

e. Data processing

To allow direct comparisons between all datasets,

each dataset has been regridded to the same 4km 3
4 km grid at a 30-min temporal resolution matching the

GOES images. For the Q2 data, the 1 km 3 1 km esti-

mates are averaged onto a 4 km3 4 km grid tomatch the

resolution of the satellite data. Both the SCaMPR and

optical depth retrieval data are matched to the 4 km 3
4 km grid of the hybrid classification output using

nearest grid matching. No temporal adjustments to the

data were needed, as the Q2 instantaneous estimates

and hybrid classification product were available at the

same times as the GOES images.

3. Methodology

The precipitation estimates from SCaMPR and

SCaMPR-OD were compared to Q2 for both overall

statistics and statistics for each DCS region. Application

of the rain mask is performed in one step, where all

SCaMPR pixels with estimated rain rates .0mmh21

are set to zero for pixels identified as nonprecipitating by

the rain mask. A pixel is identified as nonprecipitating

by the rain mask if the retrieved optical depth of the

pixel is less than the prescribed threshold value. Results

fromSCaMPRand SCaMPR-ODare directly compared

with Q2 on a 4km 3 4 km grid.

In this study, days with convective activity within the

SGP study region bounded by 328 and 408N and 1058 and
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918W from the warm seasons from 2010 to 2012 were

used for analysis. The analysis was performed for every

GOES image that temporally coincided with the hybrid

classification and Q2 datasets. The warm season for this

study is defined as April–September, consistent with

previous studies (Wu et al. 2012; Stenz et al. 2014). As

shown in Fig. 2, a total of 128 different optical depth

thresholds were applied to SCaMPR to investigate how

the performance of SCaMPR-ODvaries with the chosen

cloud optical depth threshold. Critical success index

(CSI) is used to determine the optimal optical depth

value for the rain mask to detect measureable pre-

cipitation (rates .0.25mmh21):

CSI5H/(H1M1F) , (1)

where H represents the number of hits (estimate and

observation of measurable precipitation), M represents

the number of misses (measurable precipitation was

observed but not estimated), and F represents the

number of false alarms (measurable precipitation was

estimated but not observed). The purpose of the rain

mask is simply to aid in producing the most accurate

estimates of the instantaneous precipitating area from a

given GOES image; thus, the skill of SCaMPR-OD in

detecting measurable precipitation provides an objec-

tive means of determining improvement compared to

the original SCaMPR estimates. This skill was also

evaluated over the anvil and thin anvil/unclassified re-

gions where the bulk of modifications to SCaMPR oc-

cur, to ensure that skill is also improved in these regions

in addition to the overall SCaMPR estimates. In addition

to evaluating the CSI of SCaMPR and SCaMPR-OD, the

Heidke skill score (HSS) for SCaMPRand SCaMPR-OD

was examined:

HSS5 2(HN2FM)/[(H1M)(M1N)

1 (H1F)(F1N)] , (2)

where N represents null occurrences (measurable pre-

cipitation was neither estimated nor observed). As the

HSS accounts for a chance forecast (estimate) being

correct, it provides another means to validate the im-

provements of SCaMPR-OD over SCaMPR. While the

CSI andHSSwere calculated for the anvil and thin anvil/

unclassified regions, these scores are not possible to

calculate for CC and SR regions. By definition CC and

SR regions have measurable precipitation; therefore, no

false alarms in Eqs. (1) and (2) are possible, which

prevents the fair use of CSI and HSS to determine skill

in CC and SR regions.

The total estimated precipitating area and total esti-

mated precipitation was also calculated from both Q2

FIG. 2. (a) CSI, (b) FAR, and (c) POD for SCaMPR (black, filled

bar) and SCaMPR-OD (empty bars) for measurable precipitation

over the SGP region during warm season convective events from

2010 through 2012.
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and SCaMPR. By calculating the total estimated pre-

cipitating area, SCaMPRwith andwithout the rainmask

applied could be examined to determine how well they

represent the actual size of the precipitating regions of

DCSs, using Q2 as ground truth. The total estimated

precipitation comparison can aid in studying how well

the performance of SCaMPR is in estimating the overall

water budget of DCSs. As the bias of Q2 is known from

previous studies (Chen et al. 2013; Stenz et al. 2014;

Zhang et al. 2014), the performance of SCaMPR with

and without the rain mask in accurately representing

total rainfall from DCSs can be assessed.

Additionally, the distribution of estimated pre-

cipitation among DCS components was calculated for

Q2 and SCaMPR with and without the rain mask ap-

plied. As Q2 provides a reasonable estimate for the

actual distribution of precipitation among DCS com-

ponents (Stenz et al. 2014), these were treated as ground

truth for this evaluation. Comparison of the estimated

precipitation distributions from SCaMPR to the Q2

precipitation distributions provides insight into howwell

SCaMPR represents the precipitation variations

across a DCS. Additionally, the improvements made to

this representation by use of rain masks can be quanti-

tatively evaluated. Potential biases in estimated rainfall

rates in specific regions of DCSs can also be identified.

The combination of analyses of skill scores in pre-

cipitation detection, estimated precipitation distribu-

tions, estimated precipitating area, and estimated total

precipitation will provide a detailed quantitative analy-

sis of the performance of SCaMPR during DCSs. Ad-

ditionally, these analyses will provide more insight into

the improvement from adding a rain mask to SCaMPR

and how much the application of a rain mask can reduce

significant overestimates of precipitation from SCaMPR

that have been identified during warm season convec-

tion (Stenz et al. 2014).

4. Results

Application of the optical-depth-based rain mask

improved the CSI for estimated precipitation over a

broad range of optical depth thresholds (Fig. 2a). The

CSI from SCaMPR-OD increased with increasing opti-

cal depth thresholds up to a maximum of 0.39 with an

optical depth threshold of 22, surpassing the CSI of the

original version of SCaMPR by 0.05, then gradually

decreased as the optical depth threshold was increased

beyond 22 (Fig. 2a). The increase in CSI is attributed to

an initial rapid reduction in false alarm rate (FAR) as

the optical depth threshold of the rain mask was in-

creased (Fig. 2b), while the probability of detection

(POD) decreasesmore slowly (Fig. 2c). Once the optical

depth thresholds exceed ;50, reductions in FAR are

insignificant (Fig. 2b), while POD continues to decrease

(Fig. 2c), resulting in a lower CSI than the original

SCaMPR.

For only anvil and thin anvil/unclassified regions, the

CSI from SCaMPR-ODwas also greater than that of the

original version of SCaMPR (Fig. 3a). However, this

increase occurs over a narrower range (t threshold less

than ;30) and the optimal threshold for CSI in these

regions is;15. Again, the increase in CSI occurs from a

more rapid reduction in FAR (Fig. 3b) than the decrease

in POD (Fig. 3c). Once the optical depth threshold used

approaches ;30 for anvil and thin anvil/unclassified

regions, reductions in POD (Fig. 3c) outweigh those in

FAR (Fig. 3b), reducing CSI compared to the original

SCaMPR.

Calculation of theHSS for SCaMPRand SCaMPR-OD

(Fig. 4) produces similar results to those of the

calculated CSI. SCaMPR-OD has a broad region

(t threshold less than ;60) with an improved HSS over

the original SCaMPR (Fig. 4). TheHSS ismaximized for

SCaMPR-ODwhen an optical depth threshold of;25 is

used. Figure 5 shows the HSS calculated for only the

anvil and thin anvil/unclassified regions for SCaMPR

and SCaMPR-OD. Again, these results are similar to

those of the CSI with SCaMPR-OD showing improve-

ments over SCaMPR in a narrower range, with the op-

timal optical depth threshold for only anvil and thin

anvil/unclassified regions being lower than that for all

regions (Fig. 5).

Figure 6 shows the total estimated precipitating areas

from SCaMPR, SCaMPR-OD, and Q2 over the entire

study region for the duration of the study. The total

estimated precipitating area is calculated by summing

the precipitating areas from each instantaneous estimate

for the duration of the study. As demonstrated in Fig. 6,

the total estimated precipitating area for SCaMPR-OD

decreases as the optical depth threshold increases,

matching the Q2 precipitating area when an optical

depth threshold of 22 is used. This result is consistent

with Fig. 2, where the maximum CSI occurs with an

optical depth threshold of 22. Compared to the Q2

precipitating area, the original version of SCaMPR

overestimates the precipitating area by 45.5%. The

causes of the reduction in precipitating area with the

rain mask applied are shown in Fig. 7. Compared to

the classified Q2 precipitating area, both CC and SR

precipitating areas from SCaMPR and SCaMPR-OD

are underestimated (Figs. 7a,b), but the precipitating

areas of anvil and thin anvil/unclassified regions are

greatly overestimated. As illustrated in Figs. 7c and 7d,

increasing the optical depth threshold in SCaMPR-OD

reduces the overestimates of precipitating area for anvil
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and thin anvil/unclassified regions dramatically. For

example, using the skill-maximizing optical depth

threshold of 22 reduces overestimates of precipitating

area in anvil regions by 51.2% (overestimate of 112.8%

becomes an overestimate of 61.6%; Fig. 7c) and by

216.4% (overestimate of 369.7% becomes an over-

estimate of 153.3%) in thin anvil/unclassified regions

(Fig. 7d). Slight reductions in estimated precipitating

area for CC (Fig. 7a) and SR (Fig. 7b) regions also occur

when the skill-maximizing optical depth threshold is

used. These slight reductions possibly result from po-

tential shifting of the optical depth retrievals during the

regridding process or may occur because of the aver-

aging from a 1km3 1 km to a 4 km3 4km grid. Both of

these uncertainties will be discussed in greater detail

in the discussion section. These increases in un-

derestimates of precipitating area for CC and SR regions

are consistent with the decreases in POD for SCaMPR-

OD in Fig. 2c.

Figures 8 and 9 illustrate the improvements in pre-

cipitating area from SCaMPR to SCaMPR-OD when

compared to Q2. Both figures show instantaneous rain-

rate estimates from SCaMPR (Figs. 8a, 9a), SCaMPR-

OD using an optical depth threshold of 22 (Figs. 8b,

9b), and Q2 (Figs. 8c, 9c) at the same time. For the

11 May 2011 case in Fig. 8, the estimated precipitating

area from SCaMPR-OD has been compared to the

original SCaMPR estimates, with much of this re-

duction over western Arkansas and central Oklahoma

where no precipitation was observed by radar. During

the 20 May 2011 case, application of the rain mask

significantly reduces estimated precipitating area

over central Oklahoma, producing SCaMPR-OD

FIG. 4. The HSS for measurable precipitation for SCaMPR

(black, filled bar) and SCaMPR-OD (empty bars) over the SGP

region during warm season convective events from 2010

through 2012.

FIG. 3. As in Fig. 2, but for anvil and thin anvil/unclassified

regions only.
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estimates more consistent with the radar observations

than the original SCaMPR estimates. In both of these

cases, overestimates of precipitating area still exist

after application of the rain mask, but the radar-

observed precipitation is well captured in the SCaMPR

estimates.

The total estimated amount of precipitation from

SCaMPR, SCaMPR-OD, and Q2 over the entire study

region for the duration of the study is shown in Fig. 10.

Compared to the baseline ofQ2, SCaMPRhas awet bias

of 83.4%, while the wet bias for SCaMPR-OD decreases

as the optical depth threshold increases, reaching no bias

with an optical depth threshold of ;62. At the CSI-

maximizing optical depth threshold of 22, SCaMPR-OD

reduces the wet bias of SCaMPR by 40.5%. Figure 11

shows the total amount of estimated precipitation in CC,

SR, AC, and unclassified regions of DCSs. This differs

from Fig. 7 because the summation of all estimated

precipitation in each region is being shown in Fig. 11

rather than the estimated total precipitating area for

each region. The total amount of precipitation in CC

regions is significantly underestimated by all versions of

SCaMPR, while large overestimates occur for SR re-

gions (Figs. 11a,b); this is expected as the IR tempera-

ture distributions in these two regions are virtually

indistinguishable [refer to Fig. 5 of Feng et al. (2011)],

and therefore, IR-based satellite precipitation retrieval

has low skill in distinguishing actual locations of heavier

precipitation cores. For anvil and thin anvil/unclassified

regions, the original SCaMPR overestimates precip-

itation by an order of magnitude compared to Q2

(Figs. 11c,d). Application of the rain mask dramatically

reduces overestimates in both of these regions, but large

overestimates still exist.

The estimated precipitation distribution among rain-

core (CC and SR) and non-rain-core (AC and thin anvil/

unclassified) regions for all versions of SCaMPR shows a

strong wet bias in non-rain-core regions and a strong dry

bias in rain-core regions (Fig. 12). While nearly 93% of

Q2 precipitation occurs in rain-core regions, SCaMPR

estimates only show ;46% of precipitation in rain-core

regions (Fig. 12). Application of the rain mask improves

the SCaMPR-estimated precipitation distribution as the

optical depth threshold is increased (Fig. 12). For the

skill-maximizing optical depth threshold of 22, the ma-

jority of SCaMPR-estimated precipitation now occurs in

rain-core regions (54.9%) but the large wet bias for non-

rain-core regions is still present (45.1% still in non-rain-

core regions; Fig. 12b).

5. Discussion

Applying an optical-depth-based rain mask to

SCaMPR estimates increased skill (CSI and HSS) in the

detection of precipitation and improved estimates of

precipitating areas, amounts, and precipitation distri-

butions between rain-core and non-rain-core regions.

Optical depth thresholds less than 50 produce improved

skill (CSI and HSS) compared to the original SCaMPR,

with CSI being maximized when an optical depth

threshold of 22 was chosen. While the optical depth

threshold of 22 works best for the entire study period,

for exceptionally well-organized convective systems

such as those on 11 and 20 May 2011, more stringent

optical depth thresholds can increase the performance

of SCaMPR, as shown in Fig. 13. For operational use,

more stringent optical depth thresholds may be desired

for such events, or the potential wet bias from using the

FIG. 6. Total estimated precipitating areas fromSCaMPR (black,

filled bar), SCaMPR-OD (empty bars), and Q2 (dashed line) over

the SGP region.

FIG. 5. As in Fig. 4, but for anvil and thin anvil/unclassified

regions only.
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long-term skill-maximizing optical depth threshold of 22

should be taken into account.

Skill scores (CSI and HSS) for only the anvil regions

also showed that SCaMPR-OD produced improve-

ments over the original SCaMPR. However, these

improvements were confined to a narrower range of

optical depth thresholds, and the maximum perfor-

mance in anvil regions was attained with lower optical

depth thresholds than the overall skill-maximizing op-

tical depth thresholds. This result is expected, as

FIG. 7. Total estimated precipitating areas for (a) CC, (b) SR, (c) AC, and (d) thin anvil/unclassified regions from SCaMPR (black, filled

bar), SCaMPR-OD (empty bars), and Q2 (dashed line) over the SGP region.

FIG. 8. Instantaneous precipitation rate estimates from (a) SCaMPR, (b) SCaMPR-OD, and (c) Q2 over the SGP region at 2215

UTC 20 May 2011.
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confining the analysis to only anvil regions significantly

reduces the total number of hits and therefore the nu-

merator in the skill score calculations. With this reduced

numerator, the simultaneous loss of hits while the false

alarm rate is decreased becomes significantmore quickly,

leading to a lower optical depth threshold that maxi-

mizes skill. When evaluating SCaMPR and SCaMPR-

OD over all regions, more hits and false alarms can be

trimmed off in anvil regions before skill is maximized

because of the high number of hits in CC and SR regions

(which are not reduced as significantly with application of

the rain mask).

Since anvil precipitation is very light, and not the

primary concern for operational use of products such as

SCaMPR, the skill-maximizing threshold for the overall

product is more important than the skill in these anvil

regions. However, it is important to check that

SCaMPR-OD does indeed improve skill here as well

and that gains in overall skill are not simply from

indiscriminately reducing estimated anvil precipita-

tion. While skill scores for anvil regions are lower than

the overall skill scores, which is expected from the

greater uncertainties in both observing and estimating

this lighter precipitation, they are still improved in

SCaMPR-OD compared to SCaMPR. This improve-

ment indicates that using an optical-depth-based rain

mask provides a method to more accurately identify and

estimate this lighter precipitation that often has a

weaker relationship to BTs than CC and SR pre-

cipitation have.

While the estimated precipitating area from SCaMPR

with the CSI-maximizing rain mask produces a total

precipitating area similar to Q2, the total estimated

precipitation volume exceeds Q2 by 42.99%. The mean

rain rates from SCaMPR, SCaMPR-OD, and Q2 in CC,

SR, AC, and unclassified regions of DCSs are given in

Table 1. For SR regions, both original SCaMPR and

SCaMPR-OD estimates produce mean precipitation

rates of 6.73 and 6.90mmh21, about 3 times as large as

the Q2mean SR precipitation rate (2.51mmh21). These

overestimates of mean precipitation rate also exist for

the anvil (6.81 and 7.45mmh21) and thin anvil/unclassified

(4.19 and 5.00mmh21) regions where theQ2mean rates

are only 1.18 and 1.19mmh21, respectively (Table 1). As

would be expected for an IR satellite-based pre-

cipitation retrieval algorithm, the mean precipitation

rates in CC regions for SCaMPR (10.36mmh21) and

SCaMPR-OD (10.70mmh21) are less than the Q2

(21.11mmh21) mean CC rainfall rate (Table 1). It is

important to note that the only adjustment to SCaMPR

precipitation rates by the rain mask is setting rates to

zero for pixels determined to be nonprecipitating, which

implies that in all four classes the pixels that are filtered

out by the mask tend to be on the low end of the rain-

rate distribution.

The improvements brought to SCaMPR from the

optical-depth-based rain mask could easily be applied to

other IR-based satellite QPEs. As long as optical depth

retrievals are available at the times when a satellite QPE

provides an instantaneous rain-rate estimate, applica-

tion of an optical-depth-based rain mask could aid in

reducing the overestimates commonly noted during

convection over anvil regions. However, a similar

FIG. 9. As in Fig. 8, but for 2245 UTC 11 May 2011.

FIG. 10. Total estimated precipitation from SCaMPR (black,

filled bar), SCaMPR-OD (empty bars), and Q2 (dashed lines) over

the SGP region.
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analysis should be performed on any QPEs that apply

this optical-depth-based rain mask as the biases and

improvements in performance will likely differ, and

the CSI-maximizing optical depth threshold value may

also change depending on the satellite QPE it is

applied to.

Uncertainties with this analysis must also be dis-

cussed, particularly those responsible for the unintuitive

result of estimates of precipitation in CC and SR regions

being reduced even at relatively low optical depth

threshold levels. First, during thematching to a common

grid, it is possible that slight shifting of the datasets may

be responsible for some CC and SR regions being er-

roneously paired with lower optical depth values.

However, this mismatch should be at a scale of less than

one grid box and is not the sole source of uncertainty.

Additionally, during the averaging process for Q2 and

hybrid classification output, uncertainties exist. For ex-

ample, the radar-identified CC, SR, and AC regions are

identified at a 1 km 3 1 km resolution and are paired

with Q2 rain-rate estimates at a 1 km3 1km resolution.

However, averaging to the 4km 3 4km grid to allow

comparisons with the GOES and SCaMPR data re-

quires taking the average Q2 over 16 grid boxes and the

most frequent DCS region classification over these 16

grid boxes. As a result, it is possible that a 4 km 3 4 km

CC grid box may actually contain Q2 from AC regions,

and with slight shifting could be matched with optical

depth retrievals from AC regions. Conversely, a 4 km3
4 km AC grid box may have its Q2 rain rate influenced

by CC and SR regions and may be paired with more

optically thick clouds than expected. With the combi-

nation of shifting and averaging to the 4km3 4km grid,

it is possible that a mismatch on the scale of an entire

grid box may occur, which especially for isolated con-

vection can be significant at times.

Further evidence of this potential uncertainty is evi-

dent in the rain mask filtering out the low end of the

FIG. 11. Total estimated precipitation for (a) CC, (b) SR, (c) AC, and (d) thin anvil/unclassified regions from SCaMPR (black, filled bar),

SCaMPR-OD (empty bars), and Q2 (dashed lines) over the SGP region.
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precipitation distribution for all DCS regions. The CC

and SR regions that would not typically be expected to

be filtered out based on optical depth are primarily those

pixels that border AC regions and as a result have the

lowest Q2 rainfall rates because of the averaging to a

4 km 3 4 km grid. For AC regions, the more intense

estimated rain rates are associated with those pixels

being influenced by CC and SR regions, which are

therefore more optically thick and more likely to not be

filtered out by the rain mask. Last, there is great natural

variability between optical depth and rainfall rate.

While optical depth and rainfall rate are correlated

(Kühnlein et al. 2010), optically thick clouds may pro-

duce no rainfall while optically thin clouds do produce

rainfall. This natural variability is also responsible for

instances where actual precipitation can be filtered out

even at relatively low optical depth values; however, it is

still very unlikely for optically thin clouds to be pro-

ducing precipitation. Although the relationship between

optical depth and precipitating area is robust and im-

proves the skill of SCaMPR, natural variability does

produce some nonnegligible uncertainty.

For this study, evaluation of the optical-depth-based

rain mask was only performed during daylight hours

because of the limitations of the optical depth retrieval

algorithms. Without visible measurements from the

GOES data during nighttime, accurate retrievals of

optical depth greatly increase in difficulty. At the time of

this study, an algorithm still in development by the

Minnis group at NASA Langley Research Center for

nighttime optical depth retrievals from GOES data did

qualitatively show potential for reducing SCaMPR anvil

precipitation overestimates at night. However, it is too

early to develop a nighttime rain mask using GOES-

retrieved nighttime optical depth because of their large

uncertainties. As the majority of precipitation associ-

ated with DCSs over the contiguous United States oc-

curs during nighttime, future improvements in optical

depth retrievals from GOES data have the potential of

further improving satellite QPEs. Currently, optical

depth retrievals from polar-orbiting satellites at night

would be sufficient to improve satellite QPEs in a way

similar to that shown in this study for those that provide

information such as the Visible Infrared Imaging Radi-

ometer Suite (VIIRS) Day/Night Band (DNB; Lee et al.

2006). Looking forward, it is possible that the additional

bands on the GOES-R Advanced Baseline Imager

(ABI; http://www.goes-r.gov/spacesegment/abi.html)

will improve nighttime optical depth retrievals suffi-

ciently for optical-depth-based rain masks to provide

consistent, significant improvements in the skill of sat-

ellite QPEs at night.

6. Conclusions

Application of an optical-depth-based rain mask to

SCaMPR improved the performance of SCaMPR in

multiple ways. First, the CSI for detection of precipi-

tation from SCaMPR-OD with the optimal t thresh-

old of 22 was increased to 0.39 from 0.34 from the

original SCaMPR. Additionally, improvements in CSI

and HSS were made over the original version of

SCaMPR for a broad range of rain mask optical

threshold values (1–50). Similar improvements were

seen using the HSS as a metric to evaluate perfor-

mance. Examination of only anvil and thin anvil/un-

classified regions also showed improvements in skill

(CSI and HSS) in SCaMPR-OD compared to the

FIG. 12. Percentages of estimated precipitation in (a) rain-core

(CC 1 SR) and (b) non-rain-core (AC 1 thin anvil/unclassified)

regions from SCaMPR (black, filled bar), SCaMPR-OD (empty

bars), and Q2 (dashed line) over the SGP region.
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original SCaMPR. Total estimated precipitating area

also closely matched the Q2 precipitating area when

the skill-maximizing rain mask was applied, correcting

the large overestimates in precipitating area of the

original SCaMPR.

Even with the CSI-maximizing rain mask applied, the

total estimated precipitation of SCaMPR still produced

large overestimates compared to Q2 (which also have a

wet bias). While this wet bias was significantly reduced

after application of the rain mask, the tendency for

SCaMPR to have significantly higher retrieved rain rates

in anvil and stratiform regions (which comprise the

majority of the area of a DCS) compared to what is

observed produce overestimates even when a reason-

able precipitating area has been retrieved. This bias is

most apparent in the analysis of rain-core versus non-

rain-core precipitation, where the majority of estimated

precipitation from SCaMPR falls in non-rain-core re-

gions, compared to only;7% for Q2. Application of the

rain masks to SCaMPR improves this distribution of

precipitation, but SCaMPR with the rain mask applied

still have a significant dry bias in rain cores and a sig-

nificant wet bias in non-rain-core regions.

The problems that SCaMPR IR-based precipitation

retrievals have are not unique; therefore, other satellite

QPEs could also be improved with the application of an

optical-depth-based rain mask. More general applica-

tion of this rain mask could be applied to satellite QPEs

from both geostationary and polar-orbiting satellites,

but limitations in nighttime optical depth retrievals are

the current major limitation of this rain mask. However,

as retrieval algorithms continue to improve, and with

additional information expected to be available after the

launch of GOES-R, it is highly possible that nighttime

optical-depth-based rain masks will eventually provide

consistent and significant improvements in the skill of

satellite QPEs just as this daytime rain mask currently

does. Additionally, future work could be done to ex-

plore the potential of using retrieved optical depth to

adjust rain rates for SCaMPR to address the bias in es-

timated rain rates by DCS region identified in this study.

As the largest optical depth values are often associated

FIG. 13. Instantaneous precipitation rate estimates for (a),(d) SCaMPR-OD; (b),(e) SCaMPR-ODwith a rain mask using an optical depth

threshold of 40; and (c),(f) Q2 at (top) 2245 UTC 11 May and (bottom) 2215 UTC 20 May 2011.

TABLE 1. Mean precipitation rates for each DCS region for Q2, SCaMPR, and SCaMPR-OD.

DCS region

Mean rain rate (Q2)

(mmh21)

Mean rain rate (SCaMPR)

(mmh21)

Mean rain rate (SCaMPR-OD)

(mmh21)

CC 21.11 10.36 10.70

SR 2.51 6.73 6.90

AC 1.18 6.81 7.45

Thin anvil/unclassified 1.19 4.19 5.00
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with the most intense rain rates for a DCS, it appears

possible that optical depth could be used as a predictor

for rain rates in addition to its use as a rain mask.
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